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The transfer of heat from a strongly heated, heavily finned surface is
examined. The material of the surface and of the fins has high ther-
mal conductivity (copper), while the heat transfer fluid has compara~
tively low thermal conductivity (oil). Under these conditions, increase
in the number of fins and reduction of the distance between them
makes possible a high value of the coefficient of heat transfer from
the heated surface to the fluid.

We shall examine a cylindrical body (figure) with
intense heat transfer from its surface to a fluid flow-
ing in grooves formed in the cylindrical surface in a
direction parallel to the axis.

Let us consider the case when the grooves and the
fins separating them are small in the tangential di~
rection, and when the temperature may be regarded
as constant through the thickness of a fin. Transfer
of heat along a fin by conduction is not considered.
Neglect of heat transfer through the fin in the longi-
tudinal direction gives a fin temperature in the hot-
test region that is greater than the actual value. The
thermophysical constants of the fluid—specific heat,
thermal conductivity, viscosity—are regarded as con-
stant throughout the flow. The coefficient of heat
transfer o from the fin surface to the fluid is consi-
dered constant over the whole surface of the fin, since
the Nusselt number for a plane slot is little affected
by the heat transfer conditions (we are concerned
with the laminar flow regime, since the groove width
w is small {1]).

The question is to find the temperature field and
the coefficient of heat transfer from the heated sur-
face to the cooling fluid. We introduce the coordinate
system r, z, as shown in the figure. In this coordi-
nate system we consider the cross section of a fin
approximately as part of a sector with center at the
point 0,. The radii of the tip and base of the fin, b
and a, are then easily determined in terms of radii
R, and R, (see fig. ):
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With the above assumptions the differential equa-
tion of heat transfer for the fin has the form

3} ot
l(p~—ér—(r——67) = 20 (f — u). (2)

The boundary conditions for (2) are

o

=0Owhen r=10 3)
or

479
{no heat flux through the tip of the fin),
¢
o =—9 whenr= Q. 4)
or A

Sketch of heavily finned cylindrical body.

The differential heat balance equation for the fluid
is

ou
cony —- = 2a ({ — u).
" a ) (5)

The boundary condition for (5) is
u=0when z=0 (6)

(the temperature of the fluid in the initial section is
assumed to be zero),

To solve the system of equations (2) and (5), we
perform a Laplace transformation of these equations
and their boundary conditions. Here the transformation
may be performed both for an infinitely long fin and
for a finite one, so that, owing to absence of heat
conduction in the longitudinal direction, the fin of
finite length may be considered as the first part of an
infinite one.

We introduce the notation

f= j exp(p2)t(r, 2)dz; u =ﬁ‘ wexp(pz)dz. (1)
0 0
After transformation we obtain from (2), @), and

(4)

- - d dt
2a(t—u)=kcp?(rd%), (8)
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dt di g 1
7_0 when r == b, o= TTwhenr=a 9)
and from () and (6)
2a (F — u) = cv %y pu. (10)

Eliminating the variable t from (8) and (10), we
obtain for u the equation

du | du | -
F+?+Su=0 (11)

du
"—dT = 0, r= b,
- 12
du q 1 (12)
—_—— r=a
dr rp coxy ’ ’
1 4 -—
2a
where
20
s=—=—F (13)
Ap 2a/cuxy+p
Solving (11) and satisfying boundary conditions
(12), we find [2]
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Transforming (14), we find

». ( b
u=q_“’i+_;7l_i(b_a)(%+1nr__ 1)_;_

b 1/6 a b a -1
L (22 2.2 9
+“['"a 2<a b)]][ﬁb ] +

X i {eXP (Pa2) (

n=|

+ I)Vs‘nl,wv’le)h(m/sTb) X

XIL@VSH =@V aa| x
X 1Yo (2Vsn L (2Vsh) —h@ VsV, (2Vsh), (15)
where s are roots of the equation
L (2Vsb) Y (2V'sa) —1,(2V5a)Y,(2Y/sb) =0  (16)
(equation (16) has only real roots [3]), and p, are
found in terms of sy from (13).

It can easily be shown that the series in (15) con-
verges.
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We shall find the fin temperature from (5) with the
aid of (15):
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We shall also examine the coefficient k, defined as
the ratio of the heat flux passing through the surface
of radius R, to the temperature difference between the
base of the fin (cooled surface) and the mean fluid
temperature over the fin height u’

k=q/(1 +x/pa)(to—u), 18)

where

b
_ajudf; h=1t_,. 19)

With the help of (15), (17), and (19) it is easy to com-
pute k at any point on the cooled surface.

Thus the problem has been solved.

It is easy to see that the value of the coefficient k
in the initial section k,, is greater than in the later
sections, i.e., k falls with increasing z. As z — o,
k tends to some minimum value ky,j,, Which is easily
found from (18), using (15), (17), and (19), to be

k,mnz(b—a){(l +—)[ ;; a4+

ab (1 a 3 b b -1
— == In— .
+A(2 b 2+b—ana)]}

Using (20) we can show how effective the cooling
method examined is for a very dense array of fins
and very small grooves (channels) between fins. Let
R, = 16.5 cm, ¢ = 0.00266, R; =15 cm, A = 3.8 W/cm?.
.°C, = 0.02 cm, @ = 0.25 W/cm?. °C. Then from
(20) we have kyjp = 3.29 W/em?. °C, i.e., the min-
imum value of k is quite large. This example corre- -
sponds to oil cooling of a heavily fined copper surface.
It is not hard to obtain an expression for the maximum
value of k in the initial section, if we consider the
fluid temperature constant over the entire channel

(20)

V2aiag (e Ki(ea")—l(ea")K (6"
L-+x/ga lo(ea™) K (eb") + Kolea™) I (£0")

e =V 8u/rg. (21)

kmax -




JOURNAL OF ENGINEERING PHYSICS

In the above example calculation of k without taking
account of warming up of the fluid gives ky 54 = 4.88
W/cm?. °C,

Thus, in practical calculations, it is necessary in
a number of cases to use (20) together with (21),
particularly since (20) gives a better description of
heat transfer at the hottest point of the body —at the
fluid outlet.

NOTATION

R; and R;—radii of cylindrical surface at tip and
base of fins, respectively; r, z—coordinate axes; ¢p—
angle between planes of adjacent slots; y —slot width;
b and a~—coordinates of tip and base of fin; A—thermal
conductivity of fin material; t—fin temperature; u—
mean fluid temperature over slot width; o —coeffi-
cient of heat transfer from fin surface to fluid; ¢c—
specific heat of fluid; v—fluid velocity (since the
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viscosity is considered constant over the flow, v is
also constant); q—density of heat flux through base

of fin; y—specific weight of fluid; T, u—Laplace trans-
forms; p—Laplace transform parameter, s-auxi-
liary quantity determinedfrom equation (13); I, K, J,
¥ —Bessel functions; u’~mean fluid temperature over
height of slot.
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